

Master Thesis Project

Sławomir Nowaczyk

Course Basics

30 credits course

- 20 weeks of full-time work
- 800 (!) hours of work (per person)

Web pages:

https://tinyurl.com/HH-ITE-MSc

https://hh.se/student-web/content-a-z/thesis-information-for-students-at-school-of-information-technology.html

http://caisr.hh.se/Student_projects

Goal

...provide training in independent technological/scientific research and development work within the field of Embedded and Intelligent Systems in Computer Science and Engineering

Examiners

- Embedded Systems
 - Alexey Vinel
 - Mohamed Eldefrawy
- Intelligent Systems
 - Slawomir Nowaczyk
 - Fernando Alonso-Fernandez

Learning Outcomes

- Independently search for solutions
- Use advanced methods of analysis and construction
- Discuss the international research and development
- Assess scientific papers
- Relate own work to international research
- Present and defend own work

Grading Criteria

- Overview & understanding of needs and related work
 - Highlight weak & strong parts in referenced works and how it differs from the own work
- Understanding and refinement of problem/research questions
 - Identify methods needed to investigate the problem and answer the questions
- Method & setup of study/experiments to get & evaluate results
 - Define enough tests/measurements to get sufficient results & evidence for conclusions
- Solution of problem or answer of question and other results
 - Solve problems, create & evaluate feasible solutions, analyse the quality of results
- Initiative, creativity, ambition, planning and organization
 - Use feedback from supervisor for reflection, rather than asking for solutions
- Final oral presentation and final report
 - o Results and the conclusions are clearly stated, discusses different aspects of the problem

Core Requirements

- Understand the problem
 - o in context!
- Formulate research question(s)
 - o novelty!
- Develop a solution
 - o in context!
- Evaluate the results
 - o rigorously!
- Summarise the findings
 - o conclusions!

Process Overview

- Topic selection
 - o until Sunday, 27th of October, 15:00
- Start report
 - o report December 6th, presentations 9th and/or 11th
- Half-time seminar
 - o middle of March
- Final seminar
 - end of May

Topic Selection (check prerequisites!)

- Look at list of proposed topics
 - o talk to supervisors to learn more
- Topics are mainly updated in September
 - o there might be new topics still popping up
 - it's possible to propose your own topic,
 but you need to find a supervisor from ITE
- Provide ranking of three preferred topics
 - o by Sunday, 27th of October, 15:00 (GoogleForm)
 - you can also indicate preferred partner (but no guarantees)

Start Report

- Deadline is 6th of December
 - o for sending to the examiner!
- Needs to be approved by supervisor first
 - o and you need time to incorporate their feedback
- So a reasonable schedule is:
 - 25th of November send report to supervisor
 - o 2nd of December you get feedback
 - o you have a few days to address the comments

Start Report

- Approximately five pages of text
 - please use the provided LaTeX template
- Report should cover three main aspects
 - problem formulation
 - o literature review
 - project plan & management methodology
- A short presentation on 11th of December
 - 10 minutes

Problem Formulation

- What you are going to do and why
- How will the result be evaluated
- Presented in a way that makes it clear what you your intended contribution is
- Put the emphasis on the novelty of your work, not only on the task itself
- Do not focus too much on implementation

Literature Review

- You should discuss 5+ research papers
- Well-chosen, i.e., ones that really provide sufficient coverage of your main topic
- Provide reasons for including particular papers, clearly relate them to your project
- Discuss how your work will extend the solutions presented in the literature

Project Plan

- Present the main tasks to achieve the results
 - this should be more detailed than 5-6 broad phases
 - split your problem into meaningful sub-problems
 - including some form of success criterion for each!
- Provide order and the expected timeline
 - including dependencies across tasks, and conditions
- Try to keep it realistic
 - o e.g., do not forget "report writing"
- Follow a "real" project methodology
 - o preferably something agile

Supervision

- It is not instruction!
- Support, guide and tutor
- Keep regular meetings
- Ask questions!
- But be independent!
- Track the contributions in a group

Science

- Be clear about the science part of it, do not only focus on the engineering aspect
- What have you learned during the project?
- How can your findings benefit the next person trying to solve a similar problem?
- What are the limits of applicability for the solutions you have proposed?

Reasoning & Comprehension

- You need to demonstrate the ability to reason about both problems and solutions
- The learning outcomes and grading criteria focus a lot on comprehension skills
- Not enough to solve the stated problem, you need to describe and evaluate both your solution, as well as your methods

Conclusions

- When stating your conclusions, it is not enough to just describe work done
- You need to put your work in context
- Demonstrate the novelty in the project
 - o where did you go beyond the state of the art
- Be clear about evaluation of your results
 - how good they are, why those methods were chosen, how to proceed next, lessons learned, ...

Report Writing

- Refer in text to all figures and tables
 - explain their purpose, not only what they show
- Provide full bibliography references
 - o pick whichever style you prefer, but don't mix them
- Use clear and consistent notation in text
 - o font for scalar and matrix, explain abbreviations, ...
- Use sections & subsections for readability
 - choose their titles and their contents carefully

Useful Material

Course syllabus

Course description

Grading criteria

Questions?

